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Abstract: In this study, the neural model for modeling of oil agglomeration of dolomite in the presence 
of anionic and cationic surfactants (sodium oleate and dodecylammonium hydrochloride) was 
implemented. The effect of surfactants concentration, oil dosage, time of mixing, pH, and mixing speed 
of the impeller in the process recovery were investigated using Radial Basis Function Neural Network 
(RBFNN). A significant problem in this modeling, was the selection of the structure of the neural 
network. In algorithms based on the RBFNN, the issue mentioned relates to the number of nodes in the 
determination of the hidden layer. Also, the distribution of functions in data space is significant. In the 
proposed solution, at this stage of the neural model design, the Growing Neural Gas Network (GNGN) 
was implemented. Such a procedure introduced automation of the calculation process. The centers were 
obtained from the GNGN and the structure (number of radial neurons) can be approximated based on 
a simple searching algorithm. The idea of the data calculations was implemented as an original 
algorithm that can be easily transferred to Matlab, Python, or Octave software. The values predicted 
from the neural networks model were in good agreement with the experimental data. Thus, the  
RBFNN-GNGN model used in this study, can be employed as a reliable and accurate method to predict, 
and in the future to optimize the performance of oil agglomeration process. 

Keywords: oil agglomeration modeling, dolomite, Radial Basis Function Neural Network, Growing 
Neural Gas Network 

1. Introduction 

In mineral processing to reveal a valuable mineral, very often large quantities of fine particles (below 
45 µm) are produced. Traditional methods such as froth flotation or gravity-sedimentation processes 
are not sufficient in the removal of such fine particles. Oil agglomeration is over these methods due to 
the possibility of the fine particles (below 5 µm) agglomeration with high selectivity and using simple 
equipment (Huan and Berg, 2003; Pietsch, 2005). Generally speaking, oil agglomeration is one of the 
size-enlargement methods, in which oil (a bridging liquid) is added to the mineral suspension under 
the vigorous mixing condition (Drzymała, 2007). As a result, the dispersed oil droplets collide with the 
particles at the given condition, and hence, spherical agglomerates are formed. Then, the agglomerates 
settle down and can be easily separated from the suspension by screening or sedimentation. On the 
other hand, not all particles can form stable agglomerates. The efficiency of the process mostly depends 
on the properties of the surface of minerals. Only the particles well wetted by oil (hydrophobic) can 
agglomerate. The hydrophilic ones to be agglomerated require the addition of proper surface active 
agents that adsorb onto the mineral surface and change the surface properties of minerals (Sadowski, 
2000; Sönmez and Cebeci, 2003; Duzyol and Ozkan, 2010). For this reason, the process can be used for 
selective separation of one mineral from the mineral waste, e.g. coal purification from inorganic 
components (Yadav et al., 2018; Guan et al., 2018; Kaya and Ari, 2019; van Netten et al., 2020), coal 
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recovery form tailings (Yasar and Uslu, 2019) or barite separation from carbonaceous minerals 
(Sadowski, 1995). Despite these advantages of this process, it is not commercially used due to the high 
costs associated with the use of large amounts of oil (Pietsch, 2005). For many years, researchers have 
been trying to reduce the cost by using the oil wastes or emulsion as bridging liquid (Laskowski and 
Zu, 2000; Bastrzyk et al., 2011; Polowczyk et al., 2018; Yadav et al., 2018; Shukla and Venugopal, 2019; 
Chakladar et al., 2019). The results from these studies showed that the agglomeration process could be 
an alternative to traditional methods used in mineral processing. Moreover, the course of the oil 
agglomeration process depends on many parameters presented in Fig. 1, and modeling which is very 
difficult and time-consuming. This requires solving complex mathematical equations that are 
problematic in real applications. To overcome this problem the neural network model has been used. 

 
Fig. 1. The parameters affecting the final structure of agglomerates 

Neural networks are useful tools in applications for problems that are difficult to describe with 
mathematical equations, in a plant or processes which contain nonlinear elements. These models can 
also be useful when the exact identification of parameters is problematic, in case of systems with time-
varying parameters, the uncertainty of input data, etc. It deals with the following properties: data 
approximation, pattern classification, prediction, automatic signal processing, robustness against 
disturbances (Fausett, 1994; Dias and Pooliyadda, 2001; Shokry and Espuña, 2018; Amsolov and Galin, 
2019). The above-mentioned features are related to the construction of the neural network models. 
Overall, the adaptation of the model for a given task of the most popular structures is based on the 
proper calculation of the weights connecting several nodes. The most effective methods are to use the 
gradient-based techniques. It can be done in a training process that can be realized using the appropriate 
software. However, the neural model, in most applications, tends to the separation of data according to 
specific features. 

One of the criteria for dividing neural networks is the direction of data processing. The first group 
is the feedforward neural networks. Others - recurrent models - contain additional internal connections. 
Depending on the construction, the most frequently used networks are Elman (additional context layer 
- feedback connections in the hidden layer) and Jordan (additional connections from the output to the 
model input). Recurrent neural networks contain memory elements, therefore they are most often used 
for processing of dynamic signals. In the application described in this study, this feature is not required. 
Thus, feedforward neural networks were used. Among them, two types of models dominate, which are 
distinguished according to the type of activation functions used and the method of performing 
calculations – Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Neural Network. The 
significant problem appearing at the stage of adjusting the neural network to a specific issue is the 
suitable selection of the structure complexity (Kamiński and Bastrzyk, 2018). The goal of neural network 
training is not to achieve an exact fit to the training data, but to create a model capable of approximating 
data based on input values, which were not presented during the training process. In other words, the 
aim of parameter optimization (weights and structure) is to attain an acceptable level of generalization.  

In Fig. 2 main procedures used for this important feature improvement are shown. One of them is 
the application of extended cost function (using weights or modified definition of error). Another 
method works similarly, and relies on noise inserting to the training data (Molina and Zerubia, 2000). 
In the literature, this method is often called jittering. Another mode of action (early stopping) depends 
on specifying a relatively large number of training iterations, then stopping the calculations when 
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generalization error begins to rise (Wu and Liu, 2009). Network structure modifications (during the 
training process) algorithms are also preferable (it can be significant in hardware implementation) and 
analyzed in literature. One way is to first choose a comparatively big network structure and then 
eliminate unimportant weights. Good results are yielded through the use of sensitivity methods such 
as Optimal Brain Damage or Optimal Brain Surgeon (Hassibi et al., 1993). Besides structure pruning, 
structure growing algorithms are also implemented. This group of algorithms includes Cascade 
Correlation method (Fahlman and Lebiere, 1997) and Growing Neural Gas Network (GNGN) based 
models (Vachkov, 2004). 

 
Fig. 2. Main methods used for obtaining better generalization performance 

Nowadays, one of the areas of research neural modeling has been often applied to is minerals 
processing. Mineral systems and processes are hard to measure (Cisternas et al., 2020), therefore, neural 
models can be used for their better representation and analysis. Numerous examples of the usage of 
neural modeling have been presented in the literature. For instance, neural networks were used to 
model the process of metal removal from mining wastewaters through the use of electrocoagulation 
(Ribeiro et al., 2019). It has also been used to estimate the performance of the industrial floatation 
process. Authors point out an important element in the process of training neural networks - the 
selection of initial values for weights. A genetic algorithm was used in these tasks (Allahkarami et al., 
2017; Jamróz et al., 2020). Thus, neural models can be created to perform tasks of predicting the behavior 
of a selected chemical process under certain conditions. Compared to conveying traditional 
experiments, research involving neural modeling gives results faster, is more cost–efficient, and allows 
optimization of the conditions of future experiments (Cisternas et al., 2020). However, the studies 
regarding the application of neural networks for oil agglomeration prediction is limited. For this 
purpose, the MLPs were only used (Kamiński and Bastrzyk, 2018; Yadav et al., 2018). Relying on the 
motivations and trends presented above, in this study a combination of the RBFNN and the GNGN 
implemented for structure optimization was applied. Details of the networks and training methods are 
described later. 

This paper presents a proposition and tests of modeling of oil agglomeration of dolomite in the 
presence of anionic and cationic surfactants. The implemented algorithm uses the radial neural network 
structure. Therefore, after the general problems of the neural modeling presentation, the details of the 
analyzed process, conditions, and measurement activities are described. Then, the fundamentals of the 
RBFNN calculations are shortly presented. In the following section, the GNGN is shown. The next part 
of the article was focused on the idea of the training algorithm. After the theoretical background, the 
main results were analyzed. The article was closed by remarks that highlight the achievements, 
observations, and conclusions. 

2. Materials and methods 

2.1. Materials 

As mineral, dolomite (d50 = 17 µm) collected form quarry ‘Kletno’ (Poland) was used. The X-ray 
diffraction analysis showed that the mineral is relatively pure with a small quantity of silica (c.a. 2 %). 
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The anionic surfactant for the hydrophobization of the mineral surface was sodium oleate (NaOL) (J.T. 
Baker Chemical Co., USA), and the cationic surfactant for the emulsion preparation was 
dodecylammonium hydrochloride (DDAHCl) (99 %, Alfa Aesar, USA). Kerosene with density of 0.81 g 
cm-3 (Synpeko, Poland) was used as a bridging liquid.  

2.2. Methods 

2.2.1. Oil agglomeration procedure 

For the preparation of the neural networks model, the previously performed experimental data (set of 
48 experiments) were used (Bastrzyk et al., 2011). The four experiments were used for a model 
verification (these experiments were not included in a training process). The detail of the experiments 
is shown in Fig. 3. Firstly, the mineral suspension (5 g of dolomite in 100 cm3 of distilled water) with 
desired pH was prepared and conditioned for 24 hours. Then, the process agglomeration started by 
pouring 100 cm3 of the emulsion to the suspension. After the agglomeration process had been 
completed, agglomerates were screened on a 125 µm sieve and dried in the oven. During the 
experiment, the pH (6-12), oil dosage (0.04-0.16 cm3 g-1solid), stirring rate (200-500 rpm), and time of 
mixing (6-1500 s), and surfactant concentration (NaOL: 2.43-24.36 mg g-1solid; DDAHCl: 1.8-26.6 mg g-

1solid) were changed and taken for modeling as inputs. The output was the process recovery calculated 
as the ratio of mass agglomerate to the total mass of the feed. 

 
Fig. 3. The procedure of oil agglomeration of dolomite in the presence of anionic and cationic surfactants 

2.2.2. Neural model implemented for oil agglomeration process  

2.2.2.1. Mathematica background of Radial Basis Function Neural Network 

As mentioned in the introduction, the effective operation of the neural model is possible if the data 
space is divided according to the properties of the samples. Neural networks based on perceptrons – 
typically with activation functions defined as a hyperbolic tangent – perform data separation globally – 
through appropriate combinations of shifted sigmoid functions (it creates the Gaussian functions). In 
the case of radial networks, such data analysis is performed directly (Fig. 4a). Each neuron of the hidden 
layer represents a cluster of the input data space. Global mapping of the data space is achieved through 
the superposition of the hidden layer output signals in the output layer neuron (Zhang et al., 2017; Meng 
et al., 2018). 
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a)  

b)  

Fig. 4. The concept of data classification (a) and the structure of the RBFNN (b) 

Radial Basis Function Neural Networks are a special case of feedforward neural networks. They 
consist of three layers: an input layer, a hidden layer, and an output layer. The general structure of such 
a network is shown in Fig. 4b. The output layer nodes have linear activation functions. Radial activation 
functions of the hidden layer neurons are characterized by their centers c and widths s. Most commonly 
the Gaussian functions are used. The output of such neurons can be calculated using Eq. 1 (Yu et al. 
2014): 

𝜑"(𝑋%&) = 𝑒𝑥𝑝 ,−
./012345.

6

75
8                                                            (1) 

where	𝜑" is the output of k-th radial node, 𝑋:;< = =𝑥>>,𝑥>@,𝑥>A, … , 𝑥%C,D	is the input vector assuming m 
inputs and i number of samples,	.𝑋:;< − 𝑐". is the Euclidean distance. 

The output neuron implements the weighted sum of the outputs of the hidden layer neurons. The 
output yrbf of the RBFNN with K neurons in the hidden layer is described with the expression:  

𝑦:;< = ∑ 𝑤"𝜑" + 𝑏KL
"M> = ∑ 𝑤"L

"M> 𝑒𝑥𝑝,−
./012345.

6

75
8 + 𝑏K                                 (2) 

During the adaptation of the model to the assumed task, the number of radial neurons and their 
parameters should be determined, and then the calculation of coefficients between the hidden layer and 
the output should be carried out. 

2.2.2.2. Growing Neural Gas Network 

The basic assumptions related to data representation using the neural gas algorithm were presented in 
the literature (Martinetz and Schulten, 1991). Then, based on this theory and a competitive Hebbian 
learning method, the neural network was proposed (Fritzke, 1995). It allows achieving a varying node 
topology a representation of data. The training is realized in unsupervised mode. This means that the 
output reference data are not needed. Additionally, the cost function and the calculations of derivatives 
are omitted. The proposed neural network is a model with a varying structure. It starts with a small 
connection of two elements, and is being expanded in subsequent iterations. The topology is adapted 
to accurately map the training data. 

Each node in the network is described by its position hk. Edges are used to define the neighborhoods 
of points in the net. The data analysis process is initialized by inserting a few, usually two elements at 
random positions. After presenting a certain input vector x, the position update is only applied to the 
closest node and the points in its direct topological neighborhood. Then adaptation of hk is performed 
and an update of the present state of the network connection is realized. The processing is implemented 
in iterative mode (Sun et al., 2017). As a stopping criterion, following arguments can be assumed: 
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number of iterations, additional error calculated for the analyzed signals, number of nodes, etc. Details 
of the GNGN adaptation are presented below.  

1. Define the calculation conditions (number of iterations, fixed training coefficients, level beyond 
which the link is removed, etc.). 

2. Initialize two nodes a and b, set their positions randomly to ha and hb so that ha, hb Î Rin.  
3. Analysis of the input vector x, xÎRin. 
4. Find the closest neuron h1 and the second closest neuron h2. This can be done using the Euclidean 

distance (Eqs. 3, 4 and 5): 
distR = ‖𝑥 − ℎR‖@					for					𝑙 = 1:𝐻                                                             (3) 
ℎ> = arg	min(distR)					for					𝑙 = 1:𝐻                                                           (4) 
ℎ@ = arg	min(distR/ℎR)					for					𝑙 = 1:𝐻                                                        (5) 

where H is number of all actual neurons, l is currently analysed node.  
5. Update the error value for the best neuron according to Eq. 6: 

 

6. Adaptation of the winner neuron and elements connected with Eqs. 7 and 8: 
ℎ>a𝑘c&c& + 1d = ℎ>a𝑘c&c&d + ∆ℎ>a𝑘c&c&d = ℎ>a𝑘c&c&d + 𝜍>(𝑥 − ℎ%)                           (7) 
ℎ&a𝑘c&c& + 1d = ℎ&a𝑘c&c&d + ∆ℎ&a𝑘c&c&d = ℎ&a𝑘c&c&d + 𝜍&(𝑥 − ℎ&)                          (8) 

where n means n neurons connected with h1, kgngn is number of iteration in the GNGN processing. 
7. Increment the age of all the edges in the network. 
8. Set the edge between h1 and h2 to zero. If they are not connected by the edge, create one. 
9. Remove any edges, which age exceeds the maximal age. Delete any nodes that are not connected 

by any edge. 
10. Check if the current iteration is an integer multiple of initially defined, insert an additional node 

with the rules described below. 
10.1. An additional neuron hnew should be implemented between the node with the maximal value 

of the error hmax and other connected node with hc max the highest error as seen in Eq. 9: 
ℎ&gh = 0.5(ℎClm + ℎ4	Clm)                                                                  (9) 

10.2. Create an edge between hnew, hmax and hc max, moreover the connection between hmax and  hc max 
has to be removed.  

10.3. Decrease errhmax and errhcmax errors by multiplying them by a constant value  g, set the error errhnew 
= errhmax (value after actualization). 

11. Decrease all error values by multiplying them by a constant value β. 
12. If one of the stopping criterions is not fulfilled, return to step 2. 
In Fig. 5 several stages of data calculations using the Growing neural gas network are presented. The 

State variables of the Lorenz attractor are used for the test (Kaminski, 2019). Whole training takes 120 
iterations. After each 30 of them, transients are shown. The final number of neurons is 100, however the 
number of samples inserted in input vector was 186. As it was explained above, the structure starts with 
two nodes, in the first iteration another one is added. Apart from changes in the number of neurons, 
corrections in connections are also visible. It should be highlighted that the achieved result at the end 
of calculation is not an ideal representation of the input samples, the network is active in the areas where 
data with similar properties are collected. 

2.2.2.3. Concept of the RBFNN model training 

The training of the analyzed neural model is composed of two main stages. The first of them is related 
to the structure selection – the number of radial nodes and the placement in the numerical space. The 
second task deals with the output weights determination. For the centers selection: randomization, 
optimization using gradient methods, or nature-inspired algorithms can be applied. Moreover, 
analyzing the theory and implementations of the RBFNN, it can be concluded that these algorithms 
have elements that can be interpreted as data separation. Thus, the above observation is often used for 
the selection of  some  methods  used  in  the  training process of  the  radial  network. According to this,  

)6(11111
disterrerrerrerr hhhh +=D+=
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Fig. 5. Example of processing using the GNGN 

clustering techniques are useful methods often implemented for centers values or also the calculation 
of widths (Sarimveis et al., 2003; Yang et al., 2009). The described above issue is a significant difference 
between the training of the RBFNN and the MLPs.  

In neural networks applied in the work described in this study, the Growing Neural Gas Network 
was used for the RBFNN adaptation to minerals process simulation. These models (GNGN) have high 
data reproductive abilities. They can modify the structure according to the analyzed values. Due to the 
regular deployment of nodes after training, it can be also base on a data clustering (Qin and Suganthan, 
2004). The data collected in the laboratory experiment was analyzed using the GNGN in the first part 
of the RBFNN training. The values of nodes hl have been directly assigned to the centers ck of the radial 
network. It should be noted that the number of nodes was not defined. The algorithm automatically 
selects this quantity using its internal stopping criteria. It was achieved after a slight modification. 
Additional verification of error was performed (Fritzke, 1994). The level is defined by the user. 
However, the assignation of a certain value is not problematic due to the fast stabilization of this 
transient (error in subsequent iterations).  

If the calculation of the neural network centers is correctly carried out, the superposition of values 
through the output neuron can lead to the effective operation of the neural model. For the RBFNN, two 
solutions are dominant. Calculations of cost function derivatives according to weights, including the 
second order methods, are commonly implemented (Cecati et al., 2015). Another way is based on 
calculation of the output layer matrices (Bishop, 1994). For simplicity of the analysis, the equation 
describing the output of the neural network should be presented as matrix formula seen in Eq. 10. 

𝑦:;< = ∑ 𝑤"𝜑" + 𝑏KL
"M> = ∑ 𝑤"L

"M> 𝑒𝑥𝑝,−
./012345.

6

75
8 + 𝑏K = 𝑊oΦ                              (10) 

where W is a weight matrix, F is matrix with the values of the hidden layer. 
Adaptation assumes modification of the weights at each step k of calculations (Eq. 11): 

𝑊(𝑘 + 1) = 𝑊(𝑘) + ∆𝑊(𝑘)                                                          (11) 
It should be realized for the minimization of the error. Thus, the cost function is defined as Eq. 12. 

𝐸 = >
@
(𝑦:g< − 𝑦:;<)@                                                                (12) 

where yref is the reference value for the neural network. 
Updates should be done in opposite to the gradient (Eq. 13): 

∆𝑊(𝑘) = −𝑔(𝑘)                                                                   (13) 
described using the expression presented below as Eq. 14: 



201 Physicochem. Probl. Miner. Process., 56(6), 2020, 194-205 
 

 

𝑔 = st
su

= −a𝑦:g< − 𝑦:;<d
sav012d

su
= −𝑒:;<Φ                                                 (14) 

Combining the above equations, Eq. 15 presents the adaptation of weights in the output layer is 
achieved: 

𝑊(𝑘 + 1) = 𝑊(𝑘) − 𝑎:;<𝑔(𝑘) = 𝑊(𝑘) + 𝑎:;<𝑒:;<Φ(𝑘)                                     (15) 
where yrbf is the learning rate. 
One can assume that after a suitable time the error tends to zero (k → optimum, erbf →	0). Then, it can also 
be concluded that the weight adjustments, for such conditions, are slight (g →	0). Therefore, Eq. 16 can 
be formed: 

st
su

= a𝑦:g< − 𝑦:;<dΦo = (𝑊oΦ− 𝑦:g<)Φo                                                 (16) 

after a simple transformation, Eqs. 17 and 18 describing the changes of matrix W is obtained: 
𝑊o(ΦoΦ) = Φo𝑦:g<                                                                (17) 
𝑊 = (ΦoΦ)3>Φo𝑦:g<                                                                (18) 

Eqs. 15 and 18 were applied for training of the neural network used for the model of the oil 
agglomeration process. 

3. Results and discussion 

The solution proposed by (Bastrzyk et al., 2011), where kerosene, a bridging liquid, was introduced to 
the system as an emulsion can significantly lower the cost of the process of oil agglomeration of 
hydrophilic particles. The amount of kerosene was reduced twice compared to the literature data 
(Ozkan et al., 2005). In such a system, large and mechanically strong agglomerates were formed with 
less kerosene. To predict the behavior of the oil agglomeration of dolomite particles in such a system in 
terms of the process recovery, the combination of the RBFNN and GNGN was used.  

Based on the rules of calculations described earlier in this article, the software (simple application) 
has been developed. The code was prepared without additional external libraries. Moreover, only basic 
commands were used. This approach enables quick conversion of the algorithm between different 
programming languages. It was successfully tested using Python, Matlab, and Octave. The whole 
calculations, from start with neural training, tests, and closing with plots, took 19.63 sec.  

For the correct processing of the neural network, the operation of the signals should be computed in 
terms of the most variable range of activation function. Otherwise, the variables in the network can get 
stuck as almost constant numbers. The output level, in this case, cannot achieve the desired state (Fig. 
6a). This problem appears often in the calculation of real data. Samples have to be scaled before training. 
In this work, both groups (Fig. 6b) or only the input values (Fig. 6c) were divided by the maximal 
number of several sets. It was an effective operation, the results for neural network calculations of the 
normalized data are similar, and the results are repeatable. 

 
Fig. 6. Effect of data normalization – direct values from measurement (a), normalization of input data (b) and 

outcome for all scaled samples (c) 

Both methods (Eqs. 15 and 18) of weights optimization were considered in this application. 
Comparing the gradient method (Fig. 7a) and the matrix transformations (Fig. 7b), the second one, in 
this case, allows achieving higher precision. The error was calculated using Eq. 12. For the first method, 
the value was 0.1301, and for the results presented in Fig. 7b, it was equal to 0.0194. For a relatively 
small number of analyzed samples, a direct mathematical transformation of the equation describing the 
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output of the neural network is useful (if the size of matrices is high, the problem with determining the 
inverse matrices can be found). An additional selection of elements like training constant or momentum 
is not necessary. The influence of the learning rate is significant for the time of calculation and the final 
results (Fig. 8a). It determines the step of optimization. A low value can lead to long-time calculations, 
but a high coefficient may make it impossible to obtain the optimum of the cost function. In the extreme 
case, it is possible to lose the convergence of the training algorithm (Kaminski and Orlowska-Kowalska, 
2015).  

 
Fig. 7. Influence of method applied for weight optimization on final results 

The sigma can be treated as a scaling factor for the argument of the Gaussian function. In the classical 
version, this element multiplies the input. According to Eq. 2 it is in the denominator. This parameter 
shapes the width of the activation function (Fig. 8b). It influences the work of the whole network. In this 
study, it was not optimized, but selected arbitrarily. However, the dependencies between the error, the 
number of nodes, and the s parameter were analyzed.  

Simplifying, for each value of a constant number of nodes the transient has the shape of a parabola 
(Fig. 9). It means that there is an optimal value of the width. If the value is too small, the function 
performs data separation in a narrow area. This can introduce precision to the data processing, but the 
entire data set cannot be classified. If the function is too wide, the algorithm does not calculate precisely. 
Increasing the number of neurons (in tested range) increased the quality of calculations. However, if the 
appropriate number is exceeded, the generalization properties can be low. Then, the net only works 
correctly for the training data. 

The repeatability of the optimization algorithm is an important element when evaluating the results. 
In the tested model, the initial values in the GNGN model were selected as randomly chosen elements 
from the dataset. This introduces a different starting point for subsequent calculations. At this point in 
the study, the impact of the above action on the final results obtained using the RBFNN model was 
analyzed. In order to clear the presentation of the results, the selected test values are presented in Table 
1. Only minor differences can be noticed. 

 
Fig. 8. Transient of error values during the training of neural networks – the influence of the learning rate (a). The 

activation function of the hidden layer in the RBFNN (b) 

Table 1. Results achieved for three starting points of the GNGN 

yref 0.3670 0.5729 0.6077 0.8486 0.7507 
yrbf (test 1) 0.3667 0.5217 0.6462 0.8485 0.7543 
yrbf (test 2) 0.3688 0.5217 0.6470 0.8485 0.7563 
yrbf (test 3) 0.3688 0.5217 0.6467 0.8486 0.7542 
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Fig. 9. Influence of width applied for the Gauss function and number of nodes on quality of calculations 

Table 2. Comparison of the results (lab – the data obtained in the laboratory, NN – the data obtained from the 
RBFNN-GNGN model) 

Mixing 
intensity 

[rpm] 

Time of 
mixing 

[s] 

NaOL 
[mg/g] 

DDAHCL 
[mg/g] 

Kerosene 
[cm3/g] 

pH Rlab 

[%] 
RNN 
[%] 

200 600 11.3 14.6 0.1 10 0 0.2 
2000 600 11.3 14.6 0.07 10 9.4 14.1 
1500 600 11.3 14.6 0.1 10 42.5 45.1 
2500 600 11.3 14.6 0.1 10 80.0 78.6 
2000 600 11.3 19.5 0.1 10 80.9 72.7 

 
In the previous test, the testing data was generated using disturbances in training samples 

(uniformly distributed random numbers were added). Moreover, the created model RBFNN-GNGN 
was validated using four new experiments, which were not used in the training of the neural networks. 
The data are presented in Table 2; and confirm the convergence of the values obtained from the RBFNN-
GNGN model with that obtained in the laboratory. The difference between the values was changing 
from 0.2 to 8.2%. This means that the considered neural network can be successfully used to model the 
agglomeration process. 

4. Conclusions 

This study aimed to find the effective implementation of the Radial Basis Function Neural Network as 
a model presenting the features of a chemical process. The application of neural modeling, using the 
RBFNN, to a simulation of the oil agglomeration of dolomite can be treated as original. The results in 
this study present the procedure of creating a model that does not directly require any mathematical 
equations (the parameters between input and output are not described by any formula). The properties 
are estimated from the measurement data. Thus, the analyzed tools seem to be competitive for the classic 
methods. The prepared application can be easily used for modeling of other processes (only new data 
need to be applied). Implementation of the GNGN at the design stage enables the activation function 
centers to be determined. It also selects the number of nodes. It is a solution to a common problem 
related to neural network applications. During the tests, the relationships known from the theory of 
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neural networks were analyzed on a practical example (influence of training parameters on the 
convergence of adaptation, data normalization, etc.). The recovery was the output of the model. High 
precision of calculation was obtained. The difference between the experimental data and the predicted 
one was less than 10%. The obtained results showed that the proposed RBFNN-GNGN model can be 
effectively used to predict, and in the future to optimize the performance of mineral processing, such as 
oil agglomeration or flotation. 
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